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Summary

This report provides an analysis of experimental laser Doppler

velocimetry (LDV) data uncertainties that propagate from measurements in

the tunnel coordinate system to results in the model system. Calculations of

uncertainties as functions of the variables that comprise the final result

requires assessment of the contribution each variable makes. Such an

analysis enables and necessitates the experimentalists to identify and

address the contributing error sources in the experimental measurement

system. This provides an opportunity to improve the quality of data derived

from experimental systems. This is especially important in experiments

where small changes in test conditions are expected to produce small,

detectable changes in results. In addition, the need for high-quality

experimental data for CFD method validation demands a thorough

assessment of experimental uncertainty.

Transforming from one Cartesian coordinate system to another by

three sequential rotations, equations were developed to transform the

variables initially obtained in the original coordinates into variables in the

final coordinate system. Based on the transformation equations, propagation

equations for errors in the experimentally-derived flow quantities were

derived for a model at angle of attack. Experimental uncertainties were

propagated from the tunnel coordinate system into the model system.

Comparisons between results for the two systems revealed a variety of

increases and decreases in bias and precision errors.
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Introduction

Changes in experimental test conditions, with expected changes in

test results, require high repeatability of experimental data and estimates of

experimental uncertainties. For example, the validation of computational

fluid dynamics (CFD) methods requires experimental data of high quality

with the best estimates of experimental uncertainties. Laser Doppler

velocimetry (LDV) is frequently used in wind and water tunnels to make

measurements in off-body flow fields. This technique provides accurate

measurements of flow mean and fluctuating velocities from which various

turbulence relationships, e.g., Reynolds normal and shear stresses, can be

c_culated.

Many publications of experimental LDV results include an analysis of

expected errors or uncertainty in some form. Several documents are

dedicated specifically to error or uncertainty analysis. References 1 - 3 are

examples of such analyses. Experimental results are often transformed into

coordinate systems other than those in which they were measured. For

example, if one or more of the axes in a multi-axis LDV system are not

congruent with the tunnel axes, the measured quantities must be resolved

into the tunnel system. In addition, if the model being tested is at an angle

relative to the tunnel coordinate system, the measured quantities must also

be transformed into the model coordinate system.

The propagation of experimental uncertainties through the various

coordinate transformations is required to provide accurate estimates of

uncertainties in the final, transformed experimental results. Systematic
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procedures for propagating uncertainty have been described by several

authors. One of the most current references in this area is by Coleman and

Steele (reference 4).

This report addresses the propagation of experimental uncertainties

in LDV flow field measurements from the tunnel coordinate system into the

model coordinate system. The purpose is to provide a systematic way to

transform contributing errors of various calculated flow quantities into final

results.
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Symbols and Abbreviations

a,A

ANSI

ASME

b,B

B

c,C

d,D

LDV

N

P

r

RSS

S

t95

U

U,V,W

U, V, W

! f !

U ,V ,W

v4 ,
U'U', V'V', W_W '

I I U IU'V', V W , W'

transformation matrix elements

American National Standards Institute

American Society of Mechanical Engineers

transformation matrix elements

bias limit

transformation matrix elements

transformation matrix elements

unit vector

laser doppler velocimetry

number of samples

precision limit, P = t95S

result in an uncertainty analysis

root-sum-square

precision index

statistical t-distribution value giving 95%

confidence level

uncertainty or velocity, in/sec

total instantaneous velocities, in/sec

mean velocity components, in/sec

instantaneous velocity fluctuations, in/sec

rms velocity fluctuations, in/sec

Reynolds normal stresses, in2/sec 2

Reynolds shear stresses, in2/sec 2
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X

X, y, Z

A

81j

P

variable in uncertainty analysis

cartesian coordinates, in

angle of attack, deg

sideslip angle, deg

implies "uncertainty" when preceeding

quantities in uncertainty analysis

Kronecker delta

roll angle, deg

correlation coefficient between

variables in uncertainty analysis

subscripts:

Bij

i orj

ij

J

LDV

Pij

r

rms

RSS

t

X

X, y, Z

oo

1,2,3

correlation coefficient for bias errors, eq (2)

elemental component

matrix element indices

jet

LDV coordinate system

correlation coefficient for precision errors,

equation (2)

result

root mean square

root-sum-square

tunnel

variable

unit vector axes

free stream condition

intermediate axis systems
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superscripts:

I

-->

A

fluctuating quantity

mean quantity

vector

unit vector

Analysis of Experimental Uncertainties

The concepts of bias and precision errors are the fixed and random

errors, respectively, that occur in experimentation. The bias errors are

fixed, systematic or constant errors that induce an offset from the true value

of the quantity being measured. The precision errors are random variation

or repeatability errors of the quantity being measured. The total uncertainty

is then formed by a combination of a bias limit and a precision error

estimate. The bias limit, B, is an estimated limit "of a confidence interval on

the true value of the bias" (reference 4). The combination technique used in

the present study is the root-sum-square (RSS) method, where the total

uncertainty is given by,

Usss _ (B 2 + p2)i/2,

and where B is the bias limit estimate and Px is the precision limit. The

precision limit is the product of the precision index (precision error

estimate) and t95, the value of t from the statistical t distribution that gives a

95% confidence level to the estimate of the precision (random) error. For

experimental sample sizes greater than 30, the standard in reference 5
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recommends using a value for t95 of 2 for 95% confidence estimates. The

equation for the total uncertainty becomes,

URss = [ B2 + (2S) 2 ]1/2, (1)

where S is the precision error estimate or precision index.

Propagation of Uncertainty

Coleman and Steele (reference 4) describe the propagation of

uncertainty in a general uncertainty analysis. If a result, r, is a function of

many variables (x l, x2, x3 ..... XN), the uncertainty, Ur, in a calculated result

is

El I) 2ur = _-_ux, +_x_ x_ +"'+

I

_X N _ •

The Ux's are the uncertainties in the variables, xi. In a detailed uncertainty

analysis, the bias and precision limit estimates must be propagated

separately. Then the estimates are combined into the total uncertainty

(using the RSS method in this case). If the bias limits (or precision limits) of

the different variables are not independent of each other, there are cross

terms in the expressions for the bias and precision limits as follows.

{tEi 12= _Bx, +,=l j=l _x, _xj
Br

!

Bx BxjPBlj(l -- 8jj , and

8



I

I I}_)x, _s V,,, P,,,pm, (1- 8,j) , (2)

where the p's are correlation coefficients associated with each type of error

and 51j is one if i = j and zero if i _ j. If the error terms are independent (i.e.,

the errors in the measurements of the variables are independent), the cross

terms dissapear (p = 0) in equations (2).

The bias limit for r is

--I- ° ° ° -_

l

_X N _ '

and the precision limit for r is
' ' " l

, -- p =[(Orp,) 2 far p.)2+ +(ar px )'][ktax, ' +Lax, ' ' Lax,, " '

t

1

where the Bx's and the Px's are the bias and precision limits for the

measured variables, xi. The equation for the propagated precision error

estimate (precision index) is

I

fro.,' rs). ]
7

where the Sx's are the estimated precision errors in the measured results.
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In a data acquisition program, the results for the measurement

instrument may be modified by at least one coordinate transformation to

yield final results. For example, there may be a transformation from the LDV

coordinate system to the tunnel coordinate system, if one or more of the

LDV axes are not aligned with the tunnel axes. Then, if the model is at an

angle or _gies relative to the tunnel, there is a transformation to the model

coordinate system. Therefore, the uncertainty analysis is required to account

for this transformation. The propagation of the uncertainties into the

calculated results, including coordinate transformation, was carried out in a

manner similar to that used by Neuhart, et al (reference 6), where the

transformation from the LDV coordinate system to the tunnel system was

developed.

The description of the development of the coordinate transformation

equations, from the tunnel to the model coordinate system, are described in

the following section. Next, the method for estimating uncertainties in the

final, transformed results will be shown. Finally, an example calculation is

given to demonstrate the process. Uncertainties in the calculated quantities

from reference 6, in the tunnel coordinate system for a forebody/strake

model at angle of attack, are listed in table 1. The results of propagation of

the uncertainties into the model coordinate system are listed in table 2. The

tabulated results show the propagated precision error estimates (precision

indicies) instead of the precision limit. The total uncertainty, however, does

contain the precision limit, P = t95S. All quantities calculated were

normalized by appropriate terms, as shown in the tables. Final estimated

uncertainties in table 2 are presented with two significant figure accuracy

since more significant figures would be inappropriate for such estimates.
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Coordinate Transformation

The derivation of the transformation equations follows the

development of Neuhart, et al., (reference 6), which was based on the work

of Morrison, et al, in reference 7, In figure 1, the x-y-z axes shown form the

orthogonal, model coordinate system. The total velocity vector defined in

this system would be

0 = u6 X+ Vay + w_,

where the ex, ey, ez vector quantities represent unit vectors in the x, y, and z

directions, respectively. This represents the velocity defined in the model

coordinate system. The velocity defined in the tunnel coordinate system (Xl,

Yl, zl axes in figure 1) would be represented generally as

0 t = Utexl -_-Vtey ! -_ wtez| ,

where the _,, _,, _, quantities are the unit vectors in the tunnel system

coordinate directions. In general, the two coordinate systems have the same

origin, but the axes are not coincident. By successive rotations (similar to

Euler rotations), the transformation equations between the tunnel and the

model at sideslip, angle of attack, and/or roll can be obtained.

Beginning with the xz, Yl, Zl axes in figure I, a rotation is made about

the zl axis (sideslip, _). As shown in figure 2, the relationship between the

respective unit vectors can be represented by
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or In matrix form,

ex, = ex, cos [3- fly, sin [3

fly, = _x, sin [3+ fly, cos 13,

ez, = ez2

Le+, o 1JL+z,

A subsequent rotation (figure 3) about the Y2 axis (angle of attack, ct) yields,

- ='++ +L; L_ •

++ , +
= = =

or,

ex_ = ex3 cos oc + ez3 since

ey 2 = ey 3

ez_ = -e_3 sinct + _z3 cosec

i x,1,icos osin  r+x3]y, = 0 1 0 ey s .

Lez, _1 -sinec o cos_JL_

+

A final rotation about the x3 axis (roll, _, figure 4) results in

or,

x 3 _ ex

8y_ = _ycos ¢_- _ sin_,

ez_= eysin _ + _+cos

li°°]I+"ey_ = cos_b -sin_b _y

La,3 sin_ cos_ _,
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The relationship between the unit vectors in the tunnel coordinate system

(xl,yl,zl) and those in the model system (x,y,z) is, by substitution for

intermediate unit vectors, the product of the three matricies.

V x]r xteyl - ey,

Le=, L_,
rcos0-sinO!If=[Sio_cOS_o

cos_o s,r,,_lrlo o lr_1o o//o
- sin _ 0 cos_JL° sir,_$ cos$ JLa.J

Therefore, the relationship between the velocity vectors is

[u][cOS0os,n0illv t = sin 13 cos

w t 0

00IIu1o o.oco 0- inOv,
-sincz 0 cosaJLo sins eosSJLw J

or in shorthand form,

[u],,,v t = A u Bij = D U •

W t

Since the desired result will be in the model coordinate system, the

inverse process will be used. This process is defined by

iv] [ut]lut]U 1-1 -1 -1:[o,_]-'N,,P,] v_:[_,,] v, I

W t W t

(3}

Utilizing the rule that the product of a matrix and it's inverse equals the

identity matrix, the terms in each rotation matrix were determined. The

first equation, for sideslip, is shown below.
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cos°sin°olraaa3][io!l
0 0 l JLa3, a32 a3,_ o

Multiplying the terms to form nine equations, the aij terms were

determined. The solution matrix for sideslip, aij, is

cos0sin0il-SoP cOSPo "

The above inverse matrix, aij, was verified by multiplying it by the original,

Aij, matrix to yield the identity matrix.

The transformation matrix for angle of attack was derived using the

following equation.

rCo bbI[i0!l
L-sina 0 cos_JLb3_ b32 b33 0

The solution matrix for angle of attack, blj, is

leo°° -_o°]1

Lsina 0 cosaj

Finally, the transformation matrix for model roll was obtained using
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ji°COS

sin $
ol c,,c,,c,31[,o!]-_llC,,c,,C,,l=o _ .

cos_JLC_ c_ c_j 0 0

The transformation matrix for roll, clj, is

[i o oIcos _ sin _ .

-sin_ cos_J

The resulting full transformation from the tunnel to body coordinate system

is given by equation (3) as

iv]i o olrco O  in0o,ru]= 0 cos_ sin_ 1 o ll-sinp cosp Ollv,

o -sins cosSJLsina o cosaJL o o IJLw,

The three separate matricies can be combined to form a single matrix for

the three body rotations.

= sin a cos 13sin _ - sin 13cos _b sin ot sin _ sin _ + cos _ cos @ cos ot sin _//vt

sin a cos 13cos _b+ sin _ sin _) sin a sin _ cos _ - cos _ sin ¢_ cos a cos #JLw,

or in short form,

l= Dij vt = dlj •

LW,J

(4}
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Since the total instantaneous velocities are the sum of a mean and an

instantaneous fluctuating velocity,

m

U--U+U'

V=V+V' ,

W=W+W '

then the following transformations exist.

= d U {5)

u,] Fu,,lv _-[d011vtp
w' [w,'J

From the definition of the Reynolds normal and shear stresses,

and

N

_uiui

U'U'-- I=I UU
N

N

_UiV i

U'V' = i=l - UV
N

P

{6)

(7)

where ui and vl are total instantaneous velocity values. Substituting the

matrix equations (4) and (5) for the ul and u values into equation (6) yields

the following transformation equation for the u'u' Reynolds normal stress.
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UlU ! --

N ( dl ldl lUtUt +dl _dl2utvt + dl ldlautWt /
Z|+dlzdllvtut + dmdtzvtVt + dlzdiavtw t Jt=l (,+diadl lWtUt + dl3dlzwtvt + dladlawtwt

N

(dl ldll ut u--t+ dl ldl2 ut----vt+ dl Idl3 Ut-W-t" /

-|+dl2dliVtUt + d12d12vtvt + dl:dlavtwt //
(+d_3dll wt ut + dl3d_2 wt vt + dl3dl3 wt wt )

Substituting for the ul, vi, _, and Y quantities in equation (7) from equations

(4) and (5) gives the transformation equation for the u'v; Reynolds shear

stress.

N ( dtld2tutut + dlldz2utvt + dlld23utwt

Zl+d!2d2|vtu t + dl2d22vtvt + d12d23vtwt

u' v' = I--I_+dlzd21wtut + dlad22wtvt + dl3d23wtwt
N

/ dlld21 ut ut -+ dlld22 utvt + dlldu3 ut wt /

-[ +d'2d2'vtut +dl2d22vtvt +dl2d2avtwt /
l,,+dl3d21 wt ut + dlzd22 wt vt + dlzd23 wt wt )

Similar types of derivations were done for the other two normal

stresses and two shear stresses, and are not shown here. Using the rule that

the summation of a sum of terms equals the sum of the summations of the

individual terms (_ (a + b + c) = _ a + _ b + _ c) and rearranging terms

yields transformation equations that are a function of normal and shear

stresses in the tunnel coordinate system. The result is a set of

transformation equations that are expressed as the following matrix

equation.

17



u'u I

V'V" I

_'wl

u'v' I
-- i

w'u'l
-- i

V'w'l

dlldll di2di2 dl._dl: _ 2dlld12 2dlldla 2d12d13

dRld21 d22d22 dRad23 2d21d22 2d21dR3 2d22d23

d31d31 d32d32 d33d,_,_ 2d31da2 2d31d33 2da2d33

dild21 d12d22 dl._d2a dlld22 +d12d21 d11d23 +dl3d21 dj2d23 +dl3d22

d._idll d32d12 d33dl:3 datd12 + d32dll d31dl3 + d3adll d32d13 + d33d12

d2,d31 dR2d32 dR3d33 d21d32 + d22d31 d21d33 + d23d31 d22d3,_ + d2:_d32

u,-TWl
Vt'V t '

Wt'W I '

Ut'V t '

Wt'U t '

Vt'W t '

In an uncertainty analysis, the contribution of the bias and precision

limits of each variable determines the total uncertainty of the result. Clearly,

each resultant Reynolds stress error term can be can be a function of up to

nine variables. These are the sixtunnel system stresses plusthe three

rotation angles in the dij matricies. For simplicity, we will consider the most

common case where a _ 0 and _ = _ = 0. The resulting transformation matrix

for the mean velocities is

ICo ° 1= 1 0 ,

[_sin(x 0 cosct

and for the Reynolds normal and shear stresses,

- p -

U'U'

V'V'

W'W'

M'V'

: W' U'

V'W'

COS 2 (X

0

sin 2 {x

0

cos a sin a

0

0 sin 2 a 0

1 0 0

0 cos 2 a 0

0 0 cosa

0 _-cos a sin a 0

0 0 sin a

-2 cos a sin a 0

0 0

2 cos a sin a 0

0 - sin a

cos 2 (x - sin 2 (x •O

0 cos a

Ut'U t '

Vt'Vt '

Wt'Wt _

Ut'Vt '

Wt'Ut t

18



The resulting equations for the transformed mean and instantaneous

fluctuating velocities are

and

= u t cosa - w t sina

_=V t

W = u t sin a + w t cos a

U'= Ut'COS0_ - Wt 'sinct

Vt= Vt t

W'= ut'sinot + wt'coso_

(8)

The transformation equations for the Reynolds stresses are

U' U' = U t ' U t; COS 2 Ct + W t ' W t ' sin 2 ct - 2w t 'U t ' COS (_ sin ct l

V'V f ____.VttVt '

W' W' = U t ' U t 'sin 2 0t + W t 'Wt 'COS 2 0t + 2W t 'U t 'cos a sin a

(9)

U 'V"--'_ ' f ' _ /= U t V t COS(_--V t W t since

_-_ = ut'ut' c°sasin tz- wt'wt' c°sasinct + wt'ut'(c°s2 tx- sin2 or)I"
V'W"-'-'_ -" h t 'V t t sirl (_ -4- vt'w t tCOS c_

(10)

The transformed rms fluctuating velocities Urms, Vrms, and Wrms are

calculated as the square root of the transformed u °u', v' v', and w' w',

respectively, after transformation. This is done since, for example,

1 (II)
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Also, therefore,

The transformation equations for the rms velocity fluctuations involve the

square root of transformation equations (9) for u' u', v' v', and w' w'

These equations contain Reynolds normal and shear stresses in the tunnel

coordinate system (see equations (9)). However, according to equation (11),

.... 2 and wt = 2 Therefore, using2 and alSO V t V t --" Vtrm8 ' Wtrr_ .U t U t = Ut, _ , W t'

equations (9) and (11),

= = 2 sin 2 a-2w t U t cosasina) _/2 ]Urms _ (Ut,.,r 2COS20_+Wtrrm ' '

Vrms __. V_--_Vi = _tt,Vt ' I'(1

= U 2 2 w
Wrm s _ "--( trr_ sin2 oc + Wtrm. COS 20_ + 2w t U t 'COS O_ sin a)l/2

2)

Propagation of Uncertainty into the Model Coordinate System

Refering to the transformation equations (8) for the mean velocities,

the equations for the propagation of the bias limits and precision indices

(errors) can be derived using equations (2). Since

V=V t ,

and

_v
_=1

()V t

and, for example,
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B_
V

I

3v 2

the propagated bias limits and precision errors for the v mean velocities are

equal to those for the measured quantities.

That is,

B- = B-, and S- = S-.
V V t V V t

For the _ and _ velocity components, the bias limit equations become (from

equations (2))

and

; ;°= _ _' + _-_-7,_' +t_ °)
w I

_u _u
+ .ou,,,B_B_ + ...

_u, _wt

: - _ ¢_w__)_B_ 2 (3WB_h 2 +( {)w B_ +
" t._u, °') t._w, ') t._0<

m I

o_w o_w

+ au"_ o-#w-pu'*'B_'B_" + "'"

The bias limit in a was +0.226 ° (+0.004 rad). The assumption is made that

the errors in the measurements of the variables ut, wt, and a are

independent. The cross terms drop out (P,,w, = P,,: = Pw,, = 0), resulUng in

(from equaUons (8))

__:o:(co__,)_+(-_,.___,)+_ (-m_.__-_,co__):_: _._,
+(u,cos<,-w,sin_)B_B- 2=(sinaB_ +

21



Similarly, for the precision errors,

S_ 2 = (cos cz S_)2+ (_ sin cc S_)2. and

S- 2 = sin_S-- + cosaS-- .
W U t W t

The uncertainty in the angle a is limited to the bias limit only.

As before, the total uncertainty is then calculated as

I

Uu:IB  i2Sul2)
1

:(   I2Svl2)
IB  i2Swl2) 

The transformed rms fluctuating velocities were calculated as the

square root of the transformed Reynolds normal stresses (equations (12)).

Therefore, similar to the mean velocities, the bias and precision errors in

Vrms quantities were

Bv_., -- Byte., , Sv_. = Sv,.=.

The u and w rms fluctuating velocities were given by the transformation

equations (12). Cross terms are provided for the

Utm _ arld wt'u t ', and wt, _ and wt'u t' pairs since they are related in the

wt'u t ' covarial'ices, Assuming errors in measurements of

22



ut. _, wt._, and (z, were independent (eliminating those cross terms), the

equations for the bias limits were derived from

and

2 I _u..s )2 +( _UrmsBBu". =_ut._. But--. _trm. Wtn'ns
))2+_o-)wt_u'u,B.,--,,,,,,,/_ +k oaa

The assumption is made that the elements in the cross terms are perfectly

correlated, giving correlation coeffcients of one. This assumption, yielding

conservative uncertainty estimates, will be adopted in all further

developments.

Inserting the appropriate terms in the above equations and

performing some algebraic manipulation yields

( ' 12B 2 ut. _ COS 2 0_ -- cos a sin a+ wt. _ sin 2 oc

Urms k Urms

u _ 'u'O_2_in_)]__o_
Urms

Ut,_
COS 2

0_ 4- ( Wt_" sin2 0t

+ t, uZ

t

BW t rulm W I U t

Urms J _'

and

23



Bwrm" t WZ Butrm" -]-Wtm'= "{" Bwt--7_u_ '= w,_ Bw'_" Wrm s

+ [COS ¢Xsin cz(ut._. 2- wt._ 2) + wt 'ut _(1- 2 sin 2 ¢x)]2 B,, 2
Wrms 2

+ Ut_m_ sin 2 wtr._, cos 2 "_

( _r-_m a l(COS a sin a _B B +I w--_ cz l(c°s-a sin a IBw'"" BG'u"Jt w=_ )u,-w,u, jt w.._ _

The precision errors were defined by

and

2

Surms

(_U rms

12_Urrns _Urm s ¢ _Urm s

_u,_ so,_ + _,,_. s_,_. + aw,u-----_S-_u,
P

iu  uo i/ uo 1_,= S ,. S_-TW_, + ---_,----- S,_._ S_-Th..._,
OW t U t ' O'_%VI_, C_W t U t'

f _-)W FIllS S J_- Swtrtrm J¢'¢ _7 rl'_S_u___ u,_ _ ._ C_w_.uZ,Sw=_,

_,= --;-- S,.,,. S_-pE-.
v _W t Ut_W t U t _rtrm j '

The resulting equations

quantities are

for the precision errors in the Urms and Wrms

Su-2:lu-c°s °I sin2 -cosos,noUrms Sutm_ "]" Wt_m. + Swt---_ t ,Urms Swt_ Urms

t

wt_ sin 2+lu.cos_o_co_os,oo_+I u=°Ir-c°s°_in°)_--_'
and

--9
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2 Utrrr_ sin2 (Z wt.._ COS 2 a COS asin a

Swrm, = w.._ S.t... + Swt._. + w.._ S_-TE_

( a cos asino¢ _ cos2al(cosasina_s.,.. "
+ ut_sin2 1( --- /S u S_+ wt ....

_r E )_ Wrms J _rms wt ut Wrms )k Wrms ) S_
'U| '

The bias limits and precision errors for the Reynolds normal stresses

were calculated using the transformation equations (9). Again, since

V l V; = V t ' V t '

the bias limits and precision error estimates for v' v' were derived as

Bv-_v, = B--j-_., and S;T v, = Sv-_v_,.

f _ I

Assuming that the errors in the measurements of ut'u t , w t wt, and a

are independent for this quantity (eliminating those cross terms), the

equations for the bias limits in u'u' can be derived from

/ / 0u,u,  u,u,= .... B_-7-_, + __---_,-- B_-7_ +
B.u_ _ut, ut, But---_ + _Wt ,WI , _W t Ut , _ ----_ a

/ (-)/ /0u'u' 0u'u'
( 0u'u' _( 0u'u' B_pE__B__j_, ' +

+t J!, _Wt'W t ' " '_W t U t B_B_-7-_

Based on the transformation equation (9) for the u' u' Reynolds normal

stress, the bias limit is
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+[_cos_s_n_iw,'wt'-.,'_t_)-_w_'ut_(,-_i_)]_:
-2 cos a sin a(cos 2 a Bu-U-_,B--j-_, + sin 2 ct B-p-_B-pE-_ )

The bias limit in w'w' can be formulated from

= _ __¢____B_ +(aw,'u,' w,,u,,) ( a_,,,'w' Ou t ,ut Bu_-7-_ + 3w t Wt

 w,w,)i /..... B_B----=-,
)Caw, u, aw,'w, u,

Using the transformation equation for w'w' from equation (9), the bias limit

is expressed as

2 (COS 2 0_ 2_--(_in__ + _)_+(_co_sin__)
+[2 COS a sin a(utt' u t ' - wt'w t ') + 2wt'ut '(1 - 2sin 2 o_)]2 B,_ 2

+2cosasin o¢(sin2 oc B.--j_u_,Bw_E_ + cos2a B_-pE-_B_-7_ )

The precision indicies had a similar form, without the a terms, given as,

and,

2 2 )2 (-2cos asin a S-:_)S--_., =(cos2aS.--f-_._,) +(sin2aS_-pE-_ + 2

-2 cos a sin a(cos2 a S-TE-_Sw-TW + sin2a S_-7E-_Sw-7_)
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- ; (cos  s S--_ (sin 2 a S_ + + sin S_-PE-=)2

+2 cos a sin a(sin2 o¢ S--S--.<,u<, w,,u,, + c°s2 °¢ S_,--p_S_,-7_)

The uncertainty analysis for the Reynolds shear stresses was based on

the transformation equations (10). In this case, the LDV velocity

measurements were required to be made from the same seeding particle for

correlation of velocity fluctuations. Therefore, the u'v', and v' w' stresses

each had a third, cross term in their expressions for bias limits and

precision errors. The w'u' stresses had two cross terms. The equations for

determination of the bias limits for the three shear stresses can be derived

from

7( uv 1
Bu-_' tOUt'Vt' B_'--fV7_" + OVt-;-w, ' B_'-7_w_'

¢_u,v,_¢_u,v,)__.
-+" t_Ut 'V_')t_Vt W_'

_u, v, B _2

and

2 _ /2____ (av,w +( _v,w,= B u--f__ , _vt B--j_,v'w' _U t 'Vt ' 'Wt '

¢_,w,_(_v,w,1__,
+tau-_'vt'Jtav-_w_')

¢_v-_ /_+[, aa B_

= __--c-w-- B.,-7_,. _,_, B_,-7_ +' t,aw< u<_'u' aut ut _aw t w, _B"-7_m'

( aw,u,]( aw,u,,)B--B-- ¢aw,u,v _w,u,_+ _ =_ _ l::l--l:J--
_ _ I I t t Wi'Wt * WI'U t ' "+t, au::Tu_'Jt,o_wtu_' ",'",' ",'",' I_o_w,W t Jtowt U t J
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The equations for the bias limits are as follows.

( B_)2( B_) _B -2 = COS a + - sin ct
LI'V'

, , ,_ 2

+(-_t vt sintx-vt wt cos(z)Ba 2 ,

- cos a sin cz B--B--
Ut'V t ' Vt'W t '

and

( ; ix)2 B,_
2

+ _u t ' v t ' cos (x - v t ' w t sin

+ cos a sin a B--B--
tlt'V t ' Vt'W t '

sin 4(x sin 4a B--B--
+ 4 B"'-TE_B_-7_t' 4 w,,w,, w,,.,,

+[(1-2sin 2a)(u t u t w t wt' ) w, U t (2sin2ot)] 2, , _ , _ , , na 2

The precision error equations were determined from the following

relationships.

l- )i )S 2= _u'v' 2 _u'V'__S_
u'v' _UttVt, Sut-_v t' + _v t,wt,

• ' )t,_v, w,+ _U t Vt, _77"JFT___ , S_Svt-- _,

S 2 (Ov'w' +(Ov'w'
_.w. _,Ou, vt su'-_v_' ='---=-: SLT_'k,Ov, wt

 v,w,)i0v,w,/+ -- ---_ S=_-__ ,S__--_,
t ! U t V t V t W t

_.()U t V t 0Vt'W t'
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= _-- , S_

l( wuI (, wo 1---- _ S--S-- + , : S--j_,S_7.
-I- __-f'7"_, , , ut'u t' wt'u t' _._W t ,Wt_._U t U t _W t U t ' Ut

The resulting equations for the precision error estmates are,

2s_ 2=(cos_s_ ÷(-sin
- cos a sin a S_v_,S--j-_7.

= )2 (cosaS--_ 2 (sin a S--j_, + S--j_.)2

+ cos a sin a S--S--
Ut'V t ' Vt'W t '

I ) /2S-_ = = si2 2a S"'-Y_u" 2 +(-sin2as--\2 w,,w,, +[(1-2sin2a)S_,-?_]

sin 4 a sin 4 a

+ --T-s.-_s_ ,u, _ s_-_.S_,u.

Example calculation. The calculation of the bias limit in the

nondimensional shear stress is presented in this section. The equation for

estimating this error is listed below.

B_ 2-(s,n_B_)_+(cos_B_)2
r _ 2 2

q-(U t Vt'COSO_--Vt'W t sin0{) B_

+ COS a sin a B-_,Bv- _,

All velocity quantities used in this equation were nondimensionalized by U. 2,

yielding the bias limit in the nondimensional shear stress. The angle a is
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25°. The bias limit in this angle, B_, is +0.226 ° (+0.004 rad). The bias limits

t Vt v Wt 'U t V t,

in _j-_ and _ were obtained from table lc and are +0.0000029 and

+0.0000019., respectively. Average measured values of ut 'vt' and vt'w"
- U_ 2 --_U_ were

used and they were 0.0029 and 0.0016, respectively. (If this analysis was

being done on a point-by-point basis, the values at the particular point in the

tunnel would be used.) The four terms, in order of their appearance in the

bias error equation, are 1.50 X 10 -12, 1.18 X 10 -12, 6.10 X 10 -11, and 1.33 X

10 -]2. The total bias limit is +0.0000081. Clearly, the third term dominates

this error, which is the error in the angle of attack measurement. This

result is typical of most systems, and better accuracy in angle of attack

measurement will have the greatest effect in reducing this bias error.

This concludes the discussion of the propagation of uncertainty for the

calculated quantities. The tabulated results for all of the transformed, final

quantities in the model coordinate system are given in tables 2a, 2b, and 2c.

All transformed quantities were normalized by the appropriate terms, as

shown in the tables. In all cases where cross terms existed in the error

equations, the sign of the correlation coefficient was unknown. It was

therefore assumed to be the sign that would maximize the error estimate.

Analysis of Uncertainty Results

The significance of the final uncertainty results can be examined by

comparing them to values in the tunnel coordinate system. The uncertainty

results relative to the results in the tunnel coordinate system showed

changes in all quantities associated with the u and w velocity components.
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Since the effect of angle of attack, a, was the only effect examined, and the u

and w vectors only are affected by a rotations, all v-only related quantities

remained unchanged. All quantities associated with the w-related variables

showed the largest differences from the values in the tunnel system.

In general, bias limits and precision errors in the six Reynolds

V'V'

stresses increased, except for the errors in U. ' which did not change.

There was a slight decrease in uncertainty in the Urms fluctuating velocity

due to decreases in bias limit and precision error. The uncertainty in the

Wrms fluctuating velocity increased primarily due to an increase in bias limit.

Bias limit increases offset precision error decreases in the mean u velocity.

Both errors increased for the mean w velocity.

To address the effect of model sideslip and/or roll on uncertainties in

the mean velocities, the full transformation in equation (4) would be used to

formulate the transformation equations. The number of variables in the bias

error propagation equations would increase by the number of additional

angular rotations applied to the model. To evaluate the effect on rms

fluctuating velocities and the Reynolds stresses, sequential application of the

angular rotations would reduce complexity. Although not proven here, it is

assumed that this would involve developing the propagation equations for

each angle separately, setting the other angles equal to zero. The equations

for each angular rotation would then be applied separately to each

succeeding result.
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Conclusions

An analysis of the propagation of estimated experimental LDV data

uncertainties from the tunnel coordinate system to the model system has

been presented. Transforming from one Cartesian coordinate system to

another by three sequential rotations, equations were developed to

transform the variables initially obtained in the original coordinates into

variables in the final coordinate system. Based on the transformation

equations, propagation equations for errors in the experimentally-derived

flow quantities were derived for a model at angle of attack. Experimental

uncertainties were then propagated from the tunnel coordinate system into

the model system.

Comparisons between results for the two systems revealed a variety of

increases and decreases in bias and precision estimates. Quantities

associated with the w-related variables primarily increased and showed the

largest differences from the values in the tunnel system. In some cases, u-

related quai_tities decreased after transformation, or did not change

significantly.

Calculations of uncertainties as functions of the variables that comprise

the experimental results allows assessment of the contribution each variable

makes. Such an analysis enables and necessitates the experimentalists to

identify and address the contributing error sources in the experimental

measurement system. This provides an opportunity to improve the quality of

data derived from experimental systems. This is especially important in

experiments where small changes in test conditions are expected to

produce small, detectable changes in results. In addition, the need for high-

quality experimental data for CFD method validation demands a thorough

assessment of experimental uncertainty.
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Table la

Uncertainty Estimates for Results in Tunnel Coordinate System-

Mean and Fluctuating (rms) Velocities

(Reference 3 - Strake Test)

(U_o=3in/sec)

Strake Test

Bias

Precision

+.0101/ +.0254/ +.00822/ ±.00195 ±.0119 ±.00441

-.0112 -.0281 -.00957

±.00168 ±.00888 ±.00110 ±.00119 ±.0060 ±.000775

Total +.011/ +.031/ +.0085/

Uncert. -.012 -.033 -.0098

±.0031 ±.017 e.0047
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Table lb

Uncertainty Estimates for Results in Tunnel Coordinate System-

Reynolds Normal Stresses

(Reference 3 - Strake Test)

(U_=3 in/sec)

I 1 I ! tut'u, /U 2. vtv, /U _. w, w, /U_

Strake Test

Bias 0 _+,0000513 0

Precision _+.000056 +.00149 +_,000024

Total

uncert.

+.000056 +.0030 +.000024
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Table lc

Uncertainty Estimates for Results in Tunnel Coordinate System-

Reynolds Shear Stresses

(Reference 3 - Strake Test)

(Uo_=3 in/sec)

Ut'V t / U 2 v t w t / U 2 w t u t / U 2

Strake Test

Bias _+.0000029 +.0000012 0

Precis. +.00012 +.000066 ±,000020

Total

uncert.

±.00024 _+.00013 ±.000020
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Table 2a

Uncertainty Estimates for Results in Model Coordinate System-

Mean and Fluctuating (rms) Velocities

(Reference 3 - Strake Test)

(U_=3 in/sec)

_trake Test

Bias

Precision

Total

Uncert.

ulU_ vlU_ N/u. _u-_ I u. v_-_ I u.

+.01 i0/

-.0120

+.00159

+.011/

-.012

w_/U.

+.0254/ +.00909/ ±.00181 ±.0119 ±.00546

-.0281 -.0103

±.00888 ±.00122 ±.00117 ±.0060 ±.000771

+.031/ +.0094/ ±.0030 ±.017 ±.0057

-.033 -.011
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Table 2b

Uncertainty Estimates for Results in Model Coordinate System-

Reynolds Normal Stresses

(Reference 3 - Strake Test)

(U_=3 in/sec)

u,u,/u5 v,v,/u_ w,w,/u_

Strake Test

Bias +.00001 I0 +.0000513 +.0000110

Precision +.000059 _+.00149 +.0000322

Total

uncert.

+.00012 +.0030 +.000065
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Table 2c

Uncertainty Estimates for Results in Model Coordinate System-

Reynolds Shear Stresses

(Reference 3 - Strake Test)

(U_=3 in/sec)

_,v,/u_ v,w,/u_

_trake Test

Bias +.0000111 +_10000081

Precis. +.000125 +.0000958

w'u'/U£

+.O0OOOO9

+.0000339

i

Total

uncert.

+.00025 +.00019 +.000068
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Figure I. Rotations from the Tunnel ( x I, Yl, zl) to

Model (x, y, z) Coordinate System
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x 2

x 1

Figure 2. Rotations from the Tunnel ( xp yp z I) to

X2' Y2' Z2 Coordinate System
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Figure 3. Rotations from the x 2, Y2' Z2 to

x3, Y3 , z3 Coordinate System
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Figure 4. Rotations from the X 3, Y3 ' Z3 to

Model (x, y, z) Coordinate System
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